Wnt/β-catenin signaling pathway activation reverses gemcitabine resistance by attenuating Beclin1-mediated autophagy in the MG63 human osteosarcoma cell line
نویسندگان
چکیده
Anaberrant Wnt/β-catenin signaling pathway is frequently implicated in tumorigenesis. However, whether the Wnt/β‑catenin pathway plays a role in resistance to antitumor chemotherapy drugs remains unknown. In the present study, the process of autophagy was assessed following overexpression of the autophagy‑associated gene Beclin 1 in gemcitabine‑induced MG63 human osteosarcoma cells. Autophagy‑associated gene expression was measured following activation or inhibition of the Wnt/β‑catenin pathway in gemcitabine‑induced MG63 cells using reverse transcription‑quantitative polymerase chain reaction. In addition, the percentage of MG63 cell apoptosis was measured by flow cytometry following Wnt/β‑catenin pathway activation or inhibition. The results demonstrated that Beclin 1 overexpression induced autophagy and reduced gemcitabine‑induced apoptosis in MG63 human cell line. Furthermore, activation of the Wnt/β‑catenin signaling pathway attenuated autophagy and enhanced gemcitabine‑induced apoptosis. Additionally, the expression of Beclin 1 was reduced following Wnt/β‑catenin signaling pathway activation. The present study demonstrated that activation of the Wnt/β‑catenin signaling pathway may rescue chemotherapy drug resistance by downregulating the expression of Beclin 1.
منابع مشابه
The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملBeta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells
Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کامل